It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Spontaneous Raman spectroscopy is a powerful characterization tool for graphene research. Its extension to the coherent regime, despite the large nonlinear third-order susceptibility of graphene, has so far proven challenging. Due to its gapless nature, several interfering electronic and phononic transitions concur to generate its optical response, preventing to retrieve spectral profiles analogous to those of spontaneous Raman. Here we report stimulated Raman spectroscopy of the G-phonon in single and multi-layer graphene, through coherent anti-Stokes Raman Scattering. The nonlinear signal is dominated by a vibrationally non-resonant background, obscuring the Raman lineshape. We demonstrate that the vibrationally resonant coherent anti-Stokes Raman Scattering peak can be measured by reducing the temporal overlap of the laser excitation pulses, suppressing the vibrationally non-resonant background. We model the spectra, taking into account the electronically resonant nature of both. We show how coherent anti-Stokes Raman Scattering can be used for graphene imaging with vibrational sensitivity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Dipartimento di Fisica, Universitá di Roma, Roma, Italy; Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma, Italy
2 Dipartimento di Fisica, Universitá di Roma, Roma, Italy; Istituto Italiano di Tecnologia, Graphene Labs, Genova, Italy
3 Dipartimento di Fisica, Universitá di Roma, Roma, Italy
4 Cambridge Graphene Centre, Cambridge University, Cambridge, UK
5 Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma, Italy
6 IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Milano, Italy