Full text

Turn on search term navigation

© 2019 Eyding et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

To prospectively evaluate the potential of semi-quantitative evaluation of cerebral perfusion in acute ischemic stroke by comparing two established ultrasound approaches.

Materials and methods

Consecutive inclusion of patients with acute occlusion of middle cerebral artery (MCA) confirmed by either magnetic resonance imaging (MRI) or computed tomography (CT) perfusion imaging qualifying for interventional therapy. Comparison of bilateral high mechanical index (MI) bolus-kinetics (HighMiB) and unilateral low MI refill-kinetics (LowMiR) performed before specific treatment.

Results

In 16/31 patients HighMiB was eligible, in 8/31 patients LowMiR was eligible. In six out of these eight patients both HighMiB and LowMiR were eligible for direct comparison. In MR/CT perfusion imaging of the 16 patients eligible for HighMiB, 29/48 cortical regions of interest (ROIs) (60%) displayed hypoperfusion or ischemia, areas inadequately accessible by LowMiR. These ROIs made up 49% of the 59 ROIs displaying hypoperfusion or ischemia, altogether. Matching of parameters in normal and impaired ROIs between LowMiR and MRI/CT perfusion imaging was significantly poorer than in HighMiB.

Conclusion

LowMiR using refill-kinetics potentially has the advantage of real time imaging and better resolution. The diagnostic impact, however, proves inferior to HighMiB both with respect to imaging quality and semi-quantitative evaluation.

Details

Title
Ultrasonic quantification of cerebral perfusion in acute anterior circulation occlusive stroke—A comparative challenge of the refill- and the bolus-kinetics approach
Author
Eyding, Jens; Reitmeir, Raluca; Oertel, Markus; Fischer, Urs; Wiest, Roland; Gralla, Jan; Raabe, Andreas; Zubak, Irena; Werner Z´Graggen; Beck, Jürgen
First page
e0220171
Section
Research Article
Publication year
2019
Publication date
Aug 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2273747023
Copyright
© 2019 Eyding et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.