It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present a general and in-depth study of the effect of dopants in hybrid inorganic/organic ZnO/PAA (polyacrylic acid) nanocomposites. These dopants vary as much by their ionic size, as by their electronic valence and some of them have been used in ZnO due to their known magnetic and/or optical properties. The chemical nature of the dopants controls their ability to incorporate into ZnO crystal lattice. Three concentrations (0.1%, 1% and 5%) of dopants were studied in order to compare the effect of the concentration with the results obtained previously in the literature. Our results confirm in the first place the trend observed in the literature, that increase in dopant concentration leads to quenching of visible luminescence for ZnO nanocrystals obtained by very different processes. However, the degradation of photoluminescence quantum yield (PL QY) is not inevitable in our nanocomposites. At low doping concentration for some dopants with a small or comparable ionic radius than Zn2+, PL QY can be maintained or even improved, making it possible to tune the visible emission spectrum between 2.17 eV and 2.46 eV. This opens up the prospect of synthesizing phosphors without rare earth for white LEDs, whose spectrum can be tuned to render warm or cold white light, by a chemical synthesis process with a low environmental impact.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Institut des Sciences Appliquées de Lyon, INL - UMR 5270, Université de Lyon, INSA-Lyon, ECL, UCBL, CPE, CNRS, Villeurbanne, France
2 Université Lyon 1, Université de Lyon, IRCE Lyon, CNRS, UMR 5256, Villeurbanne, France