Full text

Turn on search term navigation

© 2019 Saferali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While many disease-associated single nucleotide polymorphisms (SNPs) are associated with gene expression (expression quantitative trait loci, eQTLs), a large proportion of complex disease genome-wide association study (GWAS) variants are of unknown function. Some of these SNPs may contribute to disease by regulating gene splicing. Here, we investigate whether SNPs that are associated with alternative splicing (splice QTL or sQTL) can identify novel functions for existing GWAS variants or suggest new associated variants in chronic obstructive pulmonary disease (COPD). RNA sequencing was performed on whole blood from 376 subjects from the COPDGene Study. Using linear models, we identified 561,060 unique sQTL SNPs associated with 30,333 splice sites corresponding to 6,419 unique genes. Similarly, 708,928 unique eQTL SNPs involving 15,913 genes were detected at 10% FDR. While there is overlap between sQTLs and eQTLs, 55.3% of sQTLs are not eQTLs. Co-localization analysis revealed that 7 out of 21 loci associated with COPD (p<1x10−6) in a published GWAS have at least one shared causal variant between the GWAS and sQTL studies. Among the genes identified to have splice sites associated with top GWAS SNPs was FBXO38, in which a novel exon was discovered to be protective against COPD. Importantly, the sQTL in this locus was validated by qPCR in both blood and lung tissue, demonstrating that splice variants relevant to lung tissue can be identified in blood. Other identified genes included CDK11A and SULT1A2. Overall, these data indicate that analysis of alternative splicing can provide novel insights into disease mechanisms. In particular, we demonstrated that SNPs in a known COPD GWAS locus on chromosome 5q32 influence alternative splicing in the gene FBXO38.

Details

Title
Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene
Author
Saferali, Aabida; Yun, Jeong H; Parker, Margaret M; Sakornsakolpat, Phuwanat; Chase, Robert P; Lamb, Andrew; Hobbs, Brian D; Boezen, Marike H; Dai, Xiangpeng; Kim de Jong; Beaty, Terri H; Wei, Wenyi; Zhou, Xiaobo; Silverman, Edwin K; Cho, Michael H; Castaldi, Peter J; Hersh, Craig P; Investigators, COPDGene; COPD Genetics Consortium Investigators
First page
e1008229
Section
Research Article
Publication year
2019
Publication date
Jul 2019
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2276054038
Copyright
© 2019 Saferali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.