It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Magnetorheological elastomers are an important area of study in non-classical engineering materials. These are smart materials, in which some of the physical properties are dependent on the applied magnetic field. This unique property allows to suggest new, innovative practical applications. It is therefore relevant to carry out studies in the possible application of magnetorheological elastomers in machine construction. The present article presents the results of study regarding the properties of the discussed materials subject to compressive stresses. Particular attention is given to the observed growth of surface area of mechanical hysteresis loops, which is evidence of the possibility to change the damping properties of magnetorheological elastomers. This property can be utilized in the construction of different types of machines and devices. These mostly applies to energy absorbers such as active vibration absorbers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer