It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Adhesively bonded joints are widely used in many branches of industry. Mechanical degradation of this type of connections does not have significant symptoms that can be noticed during visual assessment, so non-destructive testing becomes a very important issue. The paper deals with experimental investigations of adhesively bonded steel plates with different defects. Five samples (an intact one and four with damages in the form of partial debonding) were prepared. The inspection was conducted with the use of guided wave propagation method. Lamb waves were excited at one point of the sample, whereas the out-of-plane velocity signals were recorded in a number of points spread over the area of overlap. The processing of signals consisted of calculations of weighted root mean square (WRMS). The results of the analysis showed that the WRMS maps allow for identification and determination of size and shape of debonding areas.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer