Full text

Turn on search term navigation

© 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

Details

Title
Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions
Author
Samara, Chrysanthi; Poirot, Olivier; Domènech-Estévez, Enric; Chrast, Roman
Section
Perspective ARTICLE
Publication year
2013
Publication date
Nov 25, 2013
Publisher
Frontiers Research Foundation
e-ISSN
16625102
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2277552456
Copyright
© 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.