Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chemical signaling is ubiquitous and employs a variety of receptor types to detect the cacophony of molecules relevant for each living organism. Insects, our most diverse taxon, have evolved unique olfactory receptors with as little as 10% sequence identity between receptor types. We have identified a promiscuous volatile, 2-methyltetrahydro-3-furanone (coffee furanone), that elicits chemosensory and behavioral activity across multiple insect orders and receptors. In vivo and in vitro physiology showed that coffee furanone was detected by roughly 80% of the recorded neurons expressing the insect-specific olfactory receptor complex in the antenna of Drosophila melanogaster, at concentrations similar to other known, and less promiscuous, ligands. Neurons expressing specialized receptors, other chemoreceptor types, or mutants lacking the complex entirely did not respond to this compound. This indicates that coffee furanone is a promiscuous ligand for the insect olfactory receptor complex itself and did not induce non-specific cellular responses. In addition, we present homology modeling and docking studies with selected olfactory receptors that suggest conserved interaction regions for both coffee furanone and known ligands. Apart from its physiological activity, this known food additive elicits a behavioral response for several insects, including mosquitoes, flies, and cockroaches. A broad-scale behaviorally active molecule non-toxic to humans thus has significant implications for health and agriculture. Coffee furanone thus serves as a unique tool to unlock molecular, physiological, and behavioral relationships across this diverse receptor family and animal taxa.

Details

Title
A Functional Agonist of Insect Olfactory Receptors: Behavior, Physiology and Structure
Author
Batra, Srishti; Corcoran, Jacob; Dan-Dan, Zhang; Pal, Pramit; Umesh, K P; Kulkarni, Renuka; Löfstedt, Christer; Ramanathan Sowdhamini; Olsson, Shannon B
Section
Original Research ARTICLE
Publication year
2019
Publication date
Apr 29, 2019
Publisher
Frontiers Research Foundation
e-ISSN
16625102
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2282515889
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.