It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The ASACUSA Collaboration at CERNs Antiproton Decelerator aims to measure the ground state hyperfine splitting of antihydrogen with high precision to test the fundamental symmetry of CPT (combination of charge conjugation, parity transformation, and time reversal). For this purpose an antihydrogen detector has been developed. Its task is to count the arriving antihydrogen atoms and therefore distinguish backgroundevents (mainly cosmics) from antiproton annihilations originating from antihydrogen atoms which are produced only in small amounts. A central BGO crystal disk with position sensitive read-out detects the annihilation and a surrounding two-layered hodoscope is used for tracking charged secondaries. The hodoscope has been recently upgraded to allow precise vertex reconstruction. A machine learning analysis based on measured antiproton annihilations and cosmic rays has been developed to identify antihydrogen events.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer