It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper deals with numerical simulation of stationary flow around a marine propeller. The aim is to reproduce the hydrodynamic turbulent flow around the Wageningen B serie propellers in open water using the ANSYS FLUENT code and the RANS approach. The computational domain consists of an inter-blade channel with periodic boundaries, meshed with tetrahedral cells. The turbulence is modeled with the k-ω. The obtained results provide good agreement with the available experimental data and show that the blades number affects considerably the marine propellers performances. It is interesting to notice that the six blades propeller is the best adapted one for the open water flows.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer