It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The DAMA/LIBRA experiment (~ 250 kg sensitive mass composed by highly radio-pure NaI(Tl)) is in data taking in the underground Laboratory of Gran Sasso (LNGS). In its first phase (DAMA/LIBRA-phase1) this experiment and the former DAMA/NaI experiment (~ 100 kg of highly radio-pure NaI(Tl)) collected data for 14 independent annual cycles, exploiting the model-independent Dark Matter (DM) annual modulation signature (total exposure 1.33 ton x yr). A DM annual modulation effect has been observed at 9.3 σ C.L., supporting the presence of DM particles in the galactic halo. No systematic or side reaction able to mimic the observed DM annual modulation has been found or suggested by anyone. Recent analyses on possible diurnal effects, on the Earth shadowing effect and on possible interpretation in terms of Mirror DM will be mentioned. At present DAMA/LIBRA is running in its phase2 with increased sensitivity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer