It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper outlines a phenomenological approach towards cell survival curve at low dose using tools of extensive Statistical Mechanics and nonextensive Statistical Mechanics. An Ising chain model is developed for the cell survival curve and the canonical ensemble formalism based on Boltzmann Gibbs statistic and Tsallis statistic is presented. The resulting cell survival curve shows excellent agreement with the experimental data and the physical parameters from our Tsallis model (N’, q) can be shown to provide clear classification between healthy and cancerous cells. In this paper, we also provides possible biophysical interpretation to the (N’, q) parameters where N’ is representative of the amount of repairable DNA content in the nucleus and q represents the degree of correlation in DNA damage. Overall, this is the first time a Statistical Mechanics approach is used in Radiobiology, and could present a new perspective.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer