Full text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electrical properties of rocks are important parameters for well-log and reservoir interpretation. Laboratory measurements of such properties are time-consuming, difficult, and impossible in some cases. Being able to compute them from 3-D images of small samples will allow for the generation of a massive amount of data in a short time, opening new avenues in applied and fundamental science. To become a reliable method, the accuracy of this technology needs to be tested. In this study, we developed a comprehensive and robust workflow with clean sand from two beaches. Electrical conductivities at 1 kHz were first carefully measured in the laboratory. A range of porosities spanning from a minimum of 0.26–0.33 to a maximum of 0.39–0.44, depending on the samples, was obtained. Such a range was achieved by compacting the samples in a way that reproduces the natural packing of sand. Characteristic electrical formation factor versus porosity relationships were then obtained for each sand type. 3-D microcomputed tomography images of each sand sample from the experimental sand pack were acquired at different resolutions. Image processing was done using a global thresholding method and up to 96 subsamples of sizes from 2003 to 7003 voxels. After segmentation, the images were used to compute the effective electrical conductivity of the sub-cubes using finite-element electrostatic modelling. For the samples, a good agreement between laboratory measurements and computation from digital cores was found if a sub-cube size representative elemental volume (REV) was reached that is between 1300 and 1820 µm3, which, with an average grain size of 160 µm, is between 8 and 11 grains. Computed digital rock images of the clean sands have opened a way forward for obtaining the formation factor within the shortest possible time; laboratory calculations take 5 to 35 d as in the case of clean and shaly sands, respectively, whereas digital rock physics computation takes just 3 to 5 h.

Details

Title
Electrical formation factor of clean sand from laboratory measurements and digital rock physics
Author
Mohammed Ali Garba 1 ; Vialle, Stephanie 2 ; Madadi, Mahyar 3 ; Gurevich, Boris 4   VIAFID ORCID Logo  ; Lebedev, Maxim 2 

 Department of Geology, Gombe State University, Gombe, Nigeria; Exploration Geophysics, Curtin University, Perth, Australia 
 Exploration Geophysics, Curtin University, Perth, Australia 
 Exploration Geophysics, Curtin University, Perth, Australia; Peter Cook Centre of Carbon Capture and Storage, The University of Melbourne, Melbourne, Australia 
 Exploration Geophysics, Curtin University, Perth, Australia; CSIRO Energy, Perth, Australia 
Pages
1505-1517
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
18699510
e-ISSN
18699529
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2287016385
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.