It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The potential of environmental DNA (eDNA) methods to enhance the detection of invasive species during routine monitoring is of interest to management agencies. Here we applied the eDNA methodology concurrent with conventional detection techniques during two routine monitoring seasons to detect the presence of three invasive fish in Australia with contrasting spatial distributions (benthopelagic, pelagic and benthic): common carp (Cyprinus carpio), redfin perch (Perca fluviatilis) and Oriental weatherloach (Misgurnus anguillicaudatus). Our objectives were to compare the seasonal detection of the target species using eDNA and conventional detection (fyke nets), determine the relationship between catch per unit effort (CPUE) and DNA copy number and ascertain the best water location (surface vs. subsurface) for eDNA detection. Our results show that eDNA had a higher detection rate than fyke nets for Oriental weatherloach and redfin perch during both the autumn and spring surveys. Common carp was detected at all sites for both seasons using fyke nets and eDNA with the exception of one site during the autumn survey where common carp was captured using fyke nets but no carp eDNA was detected. Season had a significant effect on DNA concentration for common carp (P<.005) and Oriental weatherloach (P=.002) but sampling location (surface vs. subsurface) had no significant effect on DNA concentration for all three species. We found a positive correlation between CPUE and DNA copy number for Oriental weatherloach (rs = .718, α = .045) and redfin perch (rs = .756, α = .030) during spring but a non-significant, negative trend was observed for common carp in both seasons (rs = −.357, α = .385 spring; ρ = −.539, α = .168 autumn). Our results show that eDNA is an effective tool for the detection of single or multiple species to complement the traditional approaches using physical capture. As with all survey methods, the eDNA approach suffers from imperfect detection. We conclude that eDNA survey results are more powerful when used in conjunction with other survey methods as a way to enhance detection rates and increase confidence in the monitoring results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer