Full text

Turn on search term navigation

© 2019 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object

It is increasingly popular to collect as much data as possible in the hospital setting from clinical monitors for research purposes. However, in this setup the data calibration issue is often not discussed and, rather, implicitly assumed, while the clinical monitors might not be designed for the data analysis purpose. We hypothesize that this calibration issue for a secondary analysis may become an important source of artifacts in patient monitor data. We test an off-the-shelf integrated photoplethysmography (PPG) and electrocardiogram (ECG) monitoring device for its ability to yield a reliable pulse transit time (PTT) signal.

Approach

This is a retrospective clinical study using two databases: one containing 35 subjects who underwent laparoscopic cholecystectomy, another containing 22 subjects who underwent spontaneous breathing test in the intensive care unit. All data sets include recordings of PPG and ECG using a commonly deployed patient monitor. We calculated the PTT signal offline.

Main results

We report a novel constant oscillatory pattern in the PTT signal and identify this pattern as a sawtooth artifact. We apply an approach based on the de-shape method to visualize, quantify and validate this sawtooth artifact.

Significance

The PPG and ECG signals not designed for the PTT evaluation may contain unwanted artifacts. The PTT signal should be calibrated before analysis to avoid erroneous interpretation of its physiological meaning.

Details

Title
Unexpected sawtooth artifact in beat-to-beat pulse transit time measured from patient monitor data
Author
Yu-Ting, Lin; Yu-Lun Lo; Chen-Yun, Lin; Frasch, Martin G; Wu, Hau-Tieng
First page
e0221319
Section
Research Article
Publication year
2019
Publication date
Sep 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2287717692
Copyright
© 2019 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.