It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The conventional electrowetting lens usually has one tunable liquid-liquid (L-L) interface. The shape of L-L interface is deformed to get variable focal length due to electrowetting effect. However, contact angle saturation of the L-L interface is an unavoidable problem which prevents focal length from further changing. Here, we demonstrate an optofluidic lens based on electrowetting liquid piston. The proposed lens has two connected chambers, the piston chamber and the lens chamber to form a closed-loop fluidic system. The electrowetting liquid piston can generate clockwise and counter-clockwise liquid flows, which can make the L-L interface convex and concave. To prove the concept, we fabricate an optofluidic device whose shortest negative and positive focal lengths are ~−17.9 mm and ~18 mm with 5 mm aperture, respectively. The proposed optofluidic lens has large tunable focal length range. Widespread application of such an adaptive lens is foreseeable.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Electronics and Information Engineering, Sichuan University, Chengdu, China
2 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China