You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
In the last decade, cellulosic ethanol has caught the growing interest of governments and private investors worldwide as it brings the promise of responsible renewable-energy and an opportunity to depart from an oil-reliant economy. Alongside advances in bioprocessing technologies, the development of specialized bioenergy crops is seen as a pressing industrial necessity, and while C4 perennials (e.g., Miscanthus, switchgrass, and sugarcane) have been coined the most promising candidates for the production of lignocellulosic biomass, maize should not be overlooked. In this review, we have addressed the benefits of advancing maize as a second-generation bioenergy feedstock. We have also analyzed current knowledge on the maize cell wall and promising genetic strategies for its modification, given that lignocellulose recalcitrance represents the most crucial breeding target in bioenergy crop research programs. In addition to lignin, a focus on the underlying genetic basis of cellulose, hemicellulose, and ferulate cross-linking patterns, as well as their regulation, has been warranted. A comprehensive overview of the state-of-art of genomic and phenotyping strategies available for bioenergy crop research is also provided. Overall, maize represents an outstanding model organism for understanding complex cell wall characteristics and defining the path for breeders looking to improve this and other promising bioenergy grasses. With an extensive array of dedicated agronomic and genomic resources at hand, we believe that breeding maize with improved processing amenability is a likely prospect but would like to remind readers that advances in high-biomass yielding properties, improved agronomic hardiness, and enhanced processing efficiency will also be necessary.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands; Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, the Netherlands
2 Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands