Full Text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Perennial grasses can sequester soil organic carbon (SOC) in sustainably managed biofuel systems, directly mitigating atmospheric CO2 concentrations while simultaneously generating biomass for renewable energy. The objective of this study was to quantify SOC accumulation and identify the primary drivers of belowground C dynamics in a zero-tillage production system of tropical perennial C4 grasses grown for biofuel feedstock in Hawaii. Specifically, the quantity, quality, and fate of soil C inputs were determined for eight grass accessions – four varieties each of napier grass and guinea grass. Carbon fluxes (soil CO2 efflux, aboveground net primary productivity, litterfall, total belowground carbon flux, root decay constant), C pools (SOC pool and root biomass), and C quality (root chemistry, C and nitrogen concentrations, and ratios) were measured through three harvest cycles following conversion of a fallow field to cultivated perennial grasses. A wide range of SOC accumulation occurred, with both significant species and accession effects. Aboveground biomass yield was greater, and root lignin concentration was lower for napier grass than guinea grass. Structural equation modeling revealed that root lignin concentration was the most important driver of SOC pool: varieties with low root lignin concentration, which was significantly related to rapid root decomposition, accumulated the greatest amount of SOC. Roots with low lignin concentration decomposed rapidly, but the residue and associated microbial biomass/by-products accumulated as SOC. In general, napier grass was better suited for promoting soil C sequestration in this system. Further, high-yielding varieties with low root lignin concentration provided the greatest climate change mitigation potential in a ratoon system. Understanding the factors affecting SOC accumulation and the net greenhouse gas trade-offs within a biofuel production system will aid in crop selection to meet multiple goals toward environmental and economic sustainability.

Details

Title
Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics
Author
Sumiyoshi, Yudai 1 ; Crow, Susan E 1 ; Litton, Creighton M 1 ; Deenik, Jonathan L 2 ; Taylor, Andrew D 3 ; Turano, Brian 2 ; Ogoshi, Richard 2 

 Department of Natural Resources and Environmental Management, University of Hawaii Manoa, Honolulu, HI, USA 
 Department of Tropical Plant and Soil Sciences, University of Hawaii Manoa, Honolulu, HI, USA 
 Department of Biology, University of Hawaii Manoa, Honolulu, HI, USA 
Pages
694-709
Section
Original Researchs
Publication year
2017
Publication date
Apr 2017
Publisher
John Wiley & Sons, Inc.
ISSN
17571693
e-ISSN
17571707
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2290043976
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.