Full text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A superposition/convolution GPU‐accelerated dose computation algorithm (the Calculator) has been recently incorporated into commercial software. The algorithm requires validation prior to clinical use. Three photon energies were examined: conventional 6 MV and 15 MV, and 10 MV flattening filter free (10 MVFFF). For a set of IMRT and VMAT plans based on four of the five AAPM Practice Guideline 5a downloadable datasets, ion chamber (IC) measurements were performed on the water‐equivalent phantoms. The average difference between the Calculator and IC was −0.3 ± 0.8% (1SD). The same plans were projected on a phantom containing a biplanar diode array. We used the forthcoming criteria for routine gamma analysis, 3% doseerror (global (G) normalization, 2 mm distance to agreement, and 10% low dose cutoff). The γ (3%G/2 mm) average passing rate was 98.9 ± 2.1%. Measurement‐guided three‐dimensional dose reconstruction on the patient CT dataset (excluding the Lung) resulted in a similar average agreement rate with the Calculator: 98.2 ± 2.0%. The mean γ (3%G/2 mm) passing rate comparing the Calculator to the TPS (again excluding the Lung) was 99.0 ± 1.0%. Because of the significant inhomogeneity, the Lung case was investigated separately. The calculator has an alternate heterogeneity correction mode that can change the results in the thorax for higher‐energy beams (15 MV). As this correction is nonphysical and was optimized for simple slab geometries, its application leads to mixed results when compared to the TPS and independent Monte Carlo calculations, depending on the CT dataset and the plan. The Calculator vs. TPS 15 MV Guideline 5a IMRT and VMAT plans demonstrate 96.3% and 93.4% γ (3%G/2 mm) passing rates respectively. For the lower energies, which should be predominantly used in the thoracic region, the passing rates for the same plans and criteria range from 98.6 to 100%. Overall, the Calculator accuracy is sufficient for the intended use.

Details

Title
Validation of a GPU ‐Based 3D dose calculator for modulated beams
Author
Ahmed, Saeed 1 ; Hunt, Dylan 2 ; Kapatoes, Jeff 3 ; Hayward, Robert 3 ; Zhang, Geoffrey 2 ; Moros, Eduardo G 2 ; Feygelman, Vladimir 2 

 Departement of Physics, University of South Florida, Tampa, FL, USA; Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA 
 Departement of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA 
 Sun Nuclear Corp., Melbourne, FL, USA 
Pages
73-82
Section
RADIATION ONCOLOGY PHYSICS
Publication year
2017
Publication date
May 2017
Publisher
John Wiley & Sons, Inc.
e-ISSN
15269914
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2290063470
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.