You may have access to the free features available through My Research. You can save searches, save documents, create alerts and more. Please log in through your library or institution to check if you have access.
You may have access to different export options including Google Drive and Microsoft OneDrive and citation management tools like RefWorks and EasyBib. Try logging in through your library or institution to get access to these tools.
ReferencesAguilar, A., & Borrell, A. (1990). Patterns of lipid content and stratification in the blubber of fin whales (Balaenoptera physalus). Journal of Mammalogy, 71, 544–554.Aguilar, A., Giménez, J., Gómez-Campos, E., Cardona, L., & Borrell, A. (2014). δ15N value does not reflect fasting in mysticetes. PLoS ONE, 9, e92288.Aoki, K., Watanabe, Y. Y., Crocker, D. E., Robinson, P. W., Biuw, M., Costa, D. P., … Miller, P. J. (2011). Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: Validation of at-sea metrics of body density. Journal of Experimental Biology, 214, 2973–2987.Barco, S. G., D'Eri, L. R., Woodward, B. L., Winn, J. P., & Rotstein, D. S. (2010). Spectra fishing twine entanglement of a bottlenose dolphin: A case study and experimental modeling. Marine pollution bulletin, 60, 1477–1481.Barratclough, A., Jepson, P. D., Hamilton, P. K., Miller, C. A., Wilson, K., & Moore, M. J. (2014). How much does a swimming, underweight, entangled right whale (Eubalaena glacialis) weigh? Calculating the weight at sea, to facilitate accurate dosing of sedatives to enable disentanglement. Marine Mammal Science, 30, 1589–1599.Barron, D. G., Brawn, J. D., & Weatherhead, P. J. (2010). Meta-analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution, 1, 180–187.Baumgartner, M. F., & Mate, B. R. (2003). Summertime foraging ecology of North Atlantic right whales. Marine Ecology Progress Series, 264, 123–135.Baumgartner, M. F., & Mate, B. R. (2005). Summer and fall habitat of North Atlantic right whales (Eubalaena glacialis) inferred from satellite telemetry. Canadian Journal of Fisheries and Aquatic Sciences, 62, 527–543.Berga, S. L., & Loucks, T. L. (2007). Stress induced anovulation. In: G.Fink (Ed.), Encyclopedia of stress (pp. 615–631). Oxford, GB: Oxford Academic Press.Boyd, I. L., McCafferty, D. J., & Walker, T. R. (1997). Variation in foraging effort by lactating Antarctic fur seals: Response to simulated increased foraging costs. Behavioural Ecology and Sociobiology, 40, 135–144.Brillant, S. W., Vanderlaan, A. S. M., Rangeley, R. W., & Taggart, C. T. (2015). Quantitative estimates of the movement and distribution of North Atlantic right whales along the northeast coast of North America. Endangered Species Research, 27, 141–154.Brodie, P. F. (1975). Cetacean energetics, an overview of intraspecific size variation. Ecology, 56, 152–161.Cassoff, R. M., Moore, K. M., McLellan, W. A., Barco, S. G., Rotstein, D. S., & Moore, M. J. (2011). Lethal entanglement in baleen whales. Diseases of Aquatic Organisms, 96, 175–185.Cherel, Y., Robin, J.-P., Heitz, A., Calgari, C., & LeMaho, Y. (1992). Relationships between lipid availability and protein utilization during prolonged fasting. Journal of Comparative Physiology B, 162, 305–313.Cherel, Y., Robin, J.-P., & LeMaho, Y. (1988). Physiology and biochemistry of long-term fasting in birds. Canadian Journal of Zoology, 66, 159–166.Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P. Y., & Bejder, L. (2016). Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere, 7, e01468.Christiansen, F., Vikingsson, G. A., Rasmussen, M. H., & Lusseau, D. (2013). Minke whales maximise energy storage on their feeding grounds. Journal of Experimental Biology, 216, 427–436.Clapham, P. J., Young, S., & Brownell, R. J. (1999). Baleen whales: Conservation issues and the status of the most endangered populations. Mammal Review, 29, 35–60.Cornick, L. A., Inglis, S. D., Willis, K., & Horning, M. (2006). Effects of increased swimming costs on foraging behavior and efficiency of captive Steller sea lions: Evidence for behavioral plasticity in the recovery phase of dives. Journal of Experimental Marine Biology and Ecology, 333, 306–314.Culik, B. M., Bannasch, R., & Wilson, R. P. (1994). External devices on penguins: How important is shape?Marine Biology, 118, 353–357.Dunkin, R. C., McLellan, W. A., Blum, J. E., & Pabst, D. A. (2005). The ontogenetic changes in the thermal properties of blubber from Atlantic bottlenose dolphin Tursiops truncatus. Journal of Experimental Biology, 208, 1469–1480.Dunkin, R. C., McLellan, W. A., Blum, J. E., & Pabst, D. A. (2010). The buoyancy of the integument of Atlantic bottlenose dolphins (Tursiops truncatus): Effects of growth, reproduction, and nutritional state. Marine Mammal Science, 26, 573–587.Elliott, K. H., Davoren, G. K., & Gaston, A. J. (2007). The influence of buoyancy and drag on the dive behaviour of an Arctic seabird, the Thick-billed Murre. Canadian Journal of Zoology, 85, 352–361.Elliott, K. H., McFarlane-Tranquilla, L., Burke, C. M., Hedd, A., Montevecchi, W. A., & Anderson, W. G. (2012). Year-long deployments of small geolocators increase corticosterone levels in murres. Marine Ecology Progress Series, 466, 1–7.vanEs, A. J. H. (1977). The energetics of fat deposition during growth. Nutrition and Metabolism, 21, 88–104.Feldkamp, S. D. (1985). The effects of net entanglement on the drag and power output of a California sea lion, Zalophus californianus. Fishery Bulletin, 83, 692–695.Feldkamp, S. D., Costa, D. P., & DeKrey, G. K. (1988). Energetic and behavioral effects of net entanglement on juvenile northern fur seals, Callorhinus ursinus. Fishery Bulletin, 87, 85–94.Fortune, S. M. E., Trites, A. W., Mayo, C. A., Rosen, D. A. S., & Hamilton, P. K. (2013). Energetic requirements of North Atlantic right whales and the implications for species recovery. Marine Ecology Progress Series, 478, 253–272.Fortune, S. M. E., Trites, A. W., Perryman, W. L., Moore, M. J., Pettis, H. M., & Lynn, M. S. (2012). Growth and rapid early development of North Atlantic right whales (Eubalaena glacialis). Journal of Mammalogy, 93, 1342–1354.Fowler, C. W. (1987). Marine debris and northern fur seals: A case study. Marine pollution bulletin, 18, 326–335.Frisch, R. E. (1984). Body fat, puberty and fertility. Biological Reviews, 59, 161–188.Fujiwara, M., & Caswell, H. (2001). Demography of the endangered North Atlantic right whale. Nature, 414, 537–541.Gallivan, G. A. (1992). What are the metabolic rates of cetaceans?Physiological Zoology, 65, 1285–1297.Gessaman, J. A. (1973). Ecological energetics of homeotherms: A view compatible with ecological modeling. Logan, Utah, USA: Utah State University Press.Gessaman, J. A., & Nagy, K. A. (1988). Transmitter loads affect the flight speed and metabolism of homing pigeons. The Condor, 90, 662–668.Gittleman, J. L., & Thompson, S. D. (1988). Energy allocation in mammalian reproduction. American Zoologist, 28, 863–875.Hamilton, P. K., & Cooper, L. A. (2010). Changes in North Atlantic right whale (Eubalaena glacialis) cow-calf association times and use of the calving ground: 1993-2005. Marine Mammal Science, 26, 896–916.Hunt, K. E., Rolland, R. M., Kraus, S. D., & Wasser, S. K. (2006). Analysis of fecal glucocorticoids in the North Atlantic right whale (Eubalaena glacialis). General and Comparative Endocrinology, 148, 260–272.Kampstra, P. (2008). Beanplot: A boxplot alternative for visual comparison of distributions. Journal of Statistical Software, Code Snippets, 28, 1–9.Klansjcek, T., Nisbet, R. M., Caswell, H., & Neubert, M. G. (2007). A model for energetics and bioaccumulation in marine mammals with applications to the right whale. Ecological Applications, 17, 2233–2250.Knowlton, A. R., Hamilton, P. K., Marx, M. K., Pettis, H. M., & Kraus, S. D. (2012). Monitoring North Atlantic right whale Eubalaena glacialis entanglement rates: A 30 yr retrospective. Marine Ecology Progress Series, 466, 293–302.Knowlton, A. R., Hamilton, P. K., & Pettis, H. M. (2012). Status of reproductive females in the North Atlantic right whale population and impacts of human activities on their reproductive success. Report for NOAA Cooperative Agreement Number NA09OAR4320129. Retrieved from http://www.cinar.org/page.do?pid=45240. pp. 41.Knowlton, A. R., Kraus, S. D., & Kenney, R. D. (1994). Reproduction in North Atlantic right whales (Eubalaena glacialis). Canadian Journal of Zoology, 72, 1297–1305.Koopman, H. N., Pabst, D. A., McLellan, W. A., Dillaman, R. M., & Read, A. J. (2002). Changes in blubber distribution and morphology associated with starvation in the harbor porpoise (Phocoena phocoena): Evidence for regional differences in blubber structure and function. Physiological and Biochemical Zoology, 75, 498–512.Krahn, M. M., Herman, D. P., Ylitalo, G. M., CSloan, C. A., Burrows, D. G., Hobbs, R. C., … Moore, S. E. (2004). Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. Journal of Cetacean Research and Management, 6, 175–189.Kraus, S. D., & Hatch, J. J. (2001). Mating strategies in the North Atlantic right whale (Eubalaena glacialis). Journal of Cetacean Research and Management, 2(Special Issue), 237–244.Kriete, B. (1995). Bioenergetics in the killer whale, Orcinus orca. PhD Thesis, University of British Columbia, Vancouver, British Columbia, Canada.Lang, T. G., & Daybell, D. A. (1963). Porpoise performance tests in a sea-water tank. NOTS Technical Publication 3063. NAVWEPS Report 8060. 61 pp.Lockyer, C. (1978). A theoretical approach to the balance between growth and food consumption in fin and sei whales, with special reference to the female reproductive cycle. Report of the International Whaling Commission, 28, 243–249.Lockyer, C. (1981a). Estimation of the energy costs of growth, maintenance and reproduction in the female Minke whale, (Balaenoptera acutorostrata), from the southern hemisphere. Report of the International Whaling Commission, 31, 337–343.Lockyer, C. (1981b). Growth and energy budgets of large baleen whales from the southern hemisphere. In F.A.C.o.M.R. Research (ed.), Mammals in the seas (pp. 379–484). Rome, Italy: Food and Agriculture Organization.Lockyer, C. (1986). Body fat condition in Northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Canadian Journal of Fisheries and Aquatic Sciences, 43, 142–147.Lockyer, C. (1987). Evaluation of the role of fat reserves in relation to the ecology of North Atlantic fin and sei whales. In A. C.Huntley, D. P.Costa, G. A. J.Worthy, & M. A.Castellini (Eds.), Approaches to marine mammal energetics (pp. 183–203). Lawrence, Kansas, USA: Society for Marine Mammalogy.Mate, B., Nieukirk, S. L., & Kraus, S. (1997). Satellite-monitored movements of the Northern right whale. Journal of Wildlife Management, 61, 1393–1405.Mayo, C. A., & Marx, M. K. (1990). Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Canadian Journal of Zoology, 68, 2214–2220.McCue, M. D. (2010). Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology, 156, 1–18.McGregor, A. E. N. (2010). The cost of locomotion in North Atlantic right whales Eubalaena glacialis. PhD Thesis, Duke University, Durham, NC, USA.McNamara, J. M., & Houston, A. I. (2008). Optimal annual routines: Behaviour in the context of physiology and ecology. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363, 301–319.Miller, C. A., Best, P. B., Perryman, W. L., Baumgartner, M. F., & Moore, M. J. (2012). Body shape changes associated with reproductive status, nutritive condition and growth in right whales Eubalaena glacialis and E. australis. Marine Ecology Progress Series, 459, 135–156.Miller, C. A., Reeb, D., Best, P. B., Knowlton, A. R., Brown, M. W., & Moore, M. J. (2011). Blubber thickness in right whales Eubalaena glacialis and Eubalaena australis related with reproduction, life history status and prey abundance. Marine Ecology Progress Series, 438, 267–283.Montie, E. W., Letcher, R. J., Reddy, C. M., Moore, M. J., Rubinstein, B., & Hahn, M. E. (2010). Brominated flame retardants and organochlorine contaminants in winter flounder, harp and hooded seals, and North Atlantic right whales from the Northwest Atlantic Ocean. Marine Pollution Bulletin, 60, 1160–1169.Moore, M. J., Knowlton, A. R., Kraus, S. D., Mclellan, W. A., and Bonde, R. K., (2004). Morphometry, gross morphology and available histopathology in North Atlantic right whale (Eubalaena glacialis) mortalities (1970-2002). Journal of Cetacean Research and Management, 6, 199–214.Moore, M. J., van derHoop, J. M., Barco, S. G., Costidis, A. M., Gulland, F. M., Jepson, P. D., … McLellan, W. A. (2013). Criteria and case definitions for serious injury and death of pinnipeds and cetaceans caused by anthropogenic trauma. Diseases of Aquatic Organisms, 103, 229–264.NARWC (2015). North Atlantic Right Whale Consortium Database, 18 Feb 2015. Boston, MA, USA: New England Aquarium.Neilson, J. L., Straley, J. M., Gabriele, C. M., & Hills, S. (2009). Non-lethal entanglement of humpback whales (Megaptera novaeangliae) in fishing gear in northern Southeast Alaska. Journal of Biogeography, 36, 452–464.Nerini, M. K., Braham, H. W., Marquette, W. M., & Rugh, D. J. (1984). Life history of the bowhead whale, Balaena mysticetus (Mammalia: Cetacea). Journal of Zoology, 204, 443–468.New, L. F., Moretti, D. J., Hooker, S. K., Costa, D. P., & Simmons, S. E. (2013). Using energetic models to investigate the survival and reproduction of beaked whales (family Ziphiidae). PLoS ONE, 8, e68725.NFWF (2007). Status of humpback whales and human impacts. Final Programmatic Report #2003-0170-019, pp. 18. National Fish and Wildlife Foundation. Submitted by Cascadia Research Collective, Olympia, WA 98501.Nousek-McGregor, A. E., Miller, C. A., Moore, M. J., & Nowacek, D. P. (2013). Effects of body condition on buoyancy in endangered North Atlantic right whales. Physiological and Biochemical Zoology, 87, 160–171.Parks, S. E., Warren, J. D., Stamieszkin, K., Mayo, C. A., & Wiley, D. (2012). Dangerous dining: Surface foraging of North Atlantic right whales increases risk of vessel collisions. Biology letters, 8, 57–60.Parry, D. A. (1949). The structure of whale blubber, and a discussion of its thermal properties. Quarterly Journal of Microscopical Science, 90, 13–25.Pettis, H. M., Rolland, R. M., Hamilton, P. K., Brault, S., Knowlton, A. R., & Kraus, S. D. (2004). Visual health assessment of North Atlantic right whales (Eubalaena glacialis) using photographs. Canadian Journal of Zoology, 82, 8–19.Pond, C. M., & Mattacks, C. A. (1988). The distribution, cellular structure, and metabolism of adipose tissue in the fin whale, Balaenoptera physalus. Canadian Journal of Zoology, 66, 534–537.Pullar, J. D., & Webster, A. J. F. (1977). The energy cost of fat and protein deposition in the rat. British Journal of Nutrition, 37, 355–363.Rea, L. D., Rosen, D. A. S., & Trites, A. W. (2007). Utilization of stored energy reserves during fasting varies by age and season in Steller sea lions. Canadian Journal of Zoology, 85, 190–200.Read, A. J., Drinker, P., & Northridge, S. (2006). Bycatch of marine mammals in U.S. and global fisheries. Conservation Biology, 20, 163–169.Rechsteiner, E., Rosen, D. A. S., & Trites, A. W. (2013). Seasonal resting metabolic rate and food intake of captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). Aquatic Mammals, 39, 241–252.Robbins, J. (2012). Scar-based inference into Gulf of Maine humpback whale entanglement: 2010. Report to the National Marine Fisheries Service. Order number EA133F09CN0253., pp. 28.Robbins, J., Knowlton, A. R., & Landry, S. (2015). Apparent survival of North Atlantic right whales after entanglement in fishing gear. Biological Conservation, 191, 421–427.Roberts, S. B., & Young, V. R. (1988). Energy costs of fat and protein deposition in the human infant. American Journal of Clinical Nutrition, 48, 951–955.Rolland, R. M., Schick, R. S., Pettis, H. M., Knowlton, A. R., Hamilton, P. K., Clark, J. S., & Kraus, S. D. (2016). Health of North Atlantic right whales Eubalaena glacialis over three decades: From individual health to demographic and population health trends. Marine Ecology Progress Series, 542, 265–282.Schick, R. S., Kraus, S. D., Rolland, R. M., Knowlton, A. R., Hamilton, P. K., Pettis, H. M., … Clark, J. S. (2013). Using hierarchical Bayes to understand movement, health, and survival in the endangered North Atlantic right whale. PLoS ONE, 8, e64166.Schmidt-Nielsen, K. (1997). Animal physiology: Adaptation and environment. Cambridge, UK: Cambridge University Press.Simon, M., Johnson, M., Tyack, P., & Madsen, P. T. (2009). Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus). Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 3819–3828.Speakman, J. R., & Krol, E. (2010). Limits to sustained energy intake. XIII. Recent progress and future perspectives. Journal of Experimental Biology, 214, 230–241.Struntz, D. J., McLellan, W. A., Dillaman, R. M., Blum, J. E., Kucklick, J. R., & Pabst, D. A. (2004). Blubber development in bottlenose dolphins (Tursiops truncatus). Journal of morphology, 259, 7–20.Szabo, A., & Duffus, D. (2008). Mother–offspring association in the humpback whale, Megaptera novaeangliae: Following behaviour in an aquatic mammal. Animal Behaviour, 75, 1085–1092.Taber, S. M., & Thomas, P. O. (1982). Calf development and mother-calf spatial relationships in southern right whales. Animal Behaviour, 30, 1072–1083.Thomas, P. O., & Taber, S. M. (1984). Mother-infant interaction and behavioral development in southern right whales, Eubalaena australis. Behaviour, 88, 42–60.van derHoop, J. M., Nowacek, D. P., Moore, M. J. & Triantafyllou, M.Swimming kinematics and efficiency of entangled North Atlantic right whales. Endangered Species Research. doi: 10.3354/esr00781.van derHoop, J. M., Corkeron, P., Kenney, J., Landry, S., Morin, D., Smith, J., & Moore, M. J. (2016). Drag from fishing gear entangling North Atlantic right whales. Marine Mammal Science, 32, 619–642.van derHoop, J. M., Fahlman, A., Hurst, T., Rocho-Levine, J., Shorter, K. A., Petrov, V., & Moore, M. J. (2014). Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. Journal of Experimental Biology, 217, 4229–4236.van derHoop, J. M., Moore, M. J., Barco, S. G., Cole, T. V., Daoust, P. Y., Henry, A. G., … Solow, A. R. (2013). Assessment of management to mitigate anthropogenic effects on large whales. Conservation Biology, 27, 121–133.van derHoop, J. M., Moore, M. J., Fahlman, A., Bocconcelli, A., George, C., Jackson, K., … Zoodsma, B. (2013). Behavioral impacts of disentanglement of a right whale under sedation and the energetic cost of entanglement. Marine Mammal Science, 30, 282–307.Vanderlaan, A. S. M. (2010). Estimating risk to the North Atlantic right whale (Eubalaena glacialis) from ocean-going vessels and fishing gear. PhD Thesis, Dalhousie University, Halifax, Nova Scotia, Canada.Villegas-Amtmann, S., Schwarz, L. K., Sumich, J. L., & Costa, D. P. (2015). A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere, 6, art183.Wasser, S. K., & Barash, D. P. (1983). Reproductive suppression among female mammals: Implications for biomedicine and sexual selection theory. Quarterly Review of Biology, 58, 513–538.Webb, P. W. (1975). Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Board of Canada, 190, 1–158.Weber, J. M. (2009). The physiology of long-distance migration: Extending the limits of endurance metabolism. Journal of Experimental Biology, 212, 593–597.Wegner, N. C., & Cartamil, D. P. (2012). Effects of prolonged entanglement in discarded fishing gear with substantive biofouling on the health and behavior of an adult shortfin mako shark, Isurus oxyrinchus. Marine Pollution Bulletin, 64, 391–394.Weiner, J. (1992). Physiological limits to sustainable energy budgets in birds and mammals: Ecological implications. Trends in Ecology and Evolution, 7, 384–388.West, G. C. (1960). Seasonal variation in the energy balance of the tree sparrow in relation to migration. The Auk, 77, 306–329.Williams, T. M. (1989). Swimming by sea otters: Adaptations for low energetic cost locomotion. Journal of Comparative Physiology A, 164, 815–824.Williams, T. M., Friedl, W. A., & Haun, J. E. (1993). The physiology of bottlenose dolphins (Tursiops truncatus): Heart rate, metabolic rate and plasma lactate concentration during exercise. Journal of Experimental Biology, 179, 31–46.Williams, R., Vikingsson, G. A., Gislason, A., Lockyer, C., New, L., Thomas, L., & Hammond, P. S. (2013). Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES Journal of Marine Science, 70, 1273–1280.Wingfield, J. C., Maney, D. L., Breuner, C. W., Jacobs, J. D., Lynn, S., Ramenofsky, M., & Richardson, R. D. (1998). Ecological bases of hormone-behavior interactions: The “emergency life history stage”. American Zoologist, 38, 191–206.Woodley, T. H., Brown, M. W., Kraus, S., & Gaskin, D. E. (1991). Organochlorine levels in North Atlantic right whale (Eubalaena glacialis) blubber. Archives of Environmental Contamination and Toxicology, 21, 141–145.Worthy, G. A. J., & Lavigne, D. M. (1987). Mass loss, metabolic rate, and energy utilization by harp and gray seal pups during the postweaning fast. Physiological Zoology, 60, 352–364.Wright, I. A., Rhind, S. M., Whyte, T. K., & Smith, A. J. (1992). Effects of body condition at calving and feeding level after calving on LH profiles and the duration of the post-partum anoestrous period in beef cows. Animal Science, 55, 41–46.Young, R. A. (1976). Fat, energy and mammalian survival. American Zoologist, 16, 699–710.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Individuals store energy to balance deficits in natural cycles; however, unnatural events can also lead to unbalanced energy budgets. Entanglement in fishing gear is one example of an unnatural but relatively common circumstance that imposes energetic demands of a similar order of magnitude and duration of life-history events such as migration and pregnancy in large whales. We present two complementary bioenergetic approaches to estimate the energy associated with entanglement in North Atlantic right whales, and compare these estimates to the natural energetic life history of individual whales. Differences in measured blubber thicknesses and estimated blubber volumes between normal and entangled, emaciated whales indicate between 7.4 × 1010 J and 1.2 × 1011 J of energy are consumed during the course to death of a lethal entanglement. Increased thrust power requirements to overcome drag forces suggest that when entangled, whales require 3.95 × 109 to 4.08 × 1010 J more energy to swim. Individuals who died from their entanglements performed significantly more work (energy expenditure × time) than those that survived; entanglement duration is therefore critical in determining whales’ survival. Significant sublethal energetic impacts also occur, especially in reproductive females. Drag from fishing gear contributes up to 8% of the 4-year female reproductive energy budget, delaying time of energetic equilibrium (to restore energy lost by a particular entanglement) for reproduction by months to years. In certain populations, chronic entanglement in fishing gear can be viewed as a costly unnatural life-history stage, rather than a rare or short-term incident.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Details
Title
Entanglement is a costly life-history stage in large whales
Author
van der Hoop, Julie 1
; Corkeron, Peter 2 ; Moore, Michael 3
1 Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
2 NOAA Fisheries, Northeast Fisheries Science Center, Woods Hole, MA, USA
3 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA