Full text

Turn on search term navigation

© 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180o out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic versus the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, reaction times allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear versus two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency) – most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy.

Details

Title
A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release
Author
Lentz, Jennifer J; He, Yuan; Townsend, James T
Section
Original Research ARTICLE
Publication year
2014
Publication date
Aug 22, 2014
Publisher
Frontiers Research Foundation
e-ISSN
16625161
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2292101319
Copyright
© 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.