It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Whether neurogenesis occurs in the adult human brain has been a long-debated topic fueled by conflicting data both for and against neurogenesis in the mature brain. Recent reports from two independent teams may have indubitably proven that adult, hippocampal neurogenesis persists throughout the human lifespan. Llorens-Martín et al. found that thousands of immature, neurogenesis related, doublecortin-positive (DCX+) labelled neurons can be detected in the human dentate gyrus (DG) up to the eighth decade of life. While the presence of these DCX+ neurons decrease with age, they are significantly decrease in patient with Alzheimer’s disease. Another group have also found mammalian embryonic Hopx+ precursors to persist beyond the early development stage as quiescent Hopx+ radial glial-like neural progenitors during early postnatal period, then as Hopx+ adult dentate neural progenitors. Together, the findings from these two groups suggest that unlike the previously thought, neurogenesis and neuroplasticity can occur well into adulthood in some capacity, at least in the hippocampus. These recent findings that neurogenesis can occur beyond development have brought into questions whether physical exercise can be shown to promote neurogenesis and brain health, as it has been shown to promote the function of other organ systems. Some data has already shown physical exercise to induce adult hippocampal neurogenesis (AHN) as demonstrated by restoration of cognitive functions, improvement of synaptic plasticity, and enhancement of angiogenesis. A large-scale meta-analysis has also demonstrated that 45–60 min of moderate-intensity physical exercise to dramatically improve cognitive functions in human subjects over the age of 50. Given these convergent developments in our understanding of neurogenesis and exercise induced improvement in cognitive function, we speculate that hippocampal neurogenesis can be promoted by physical exercise and discuss the current molecular evidence supporting the likely molecular pathways involved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer