Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Assistive devices can be considered as one of the main applications of legged locomotion research in daily life. In order to develop an efficient and comfortable prosthesis or exoskeleton, biomechanical studies on human locomotion are very useful. In this paper, the applicability of the FMCH (force modulated compliant hip) model is investigated for control of lower limb wearable exoskeletons. This is a bioinspired method for posture control, which is based on the VPP (virtual pivot point) concept, found in human walking. By implementing the proposed method on a detailed neuromuscular model of human walking, we showed that using a biarticular actuator parallel to the hamstring muscle, activation in most of the leg muscles can be reduced. In addition, the total metabolic cost of motion is decreased up to 12%. The simple control rule of assistance is based on leg force feedback which is the only required sensory information.

Details

Title
Leg Force Control Through Biarticular Muscles for Human Walking Assistance
Author
Sharbafi, Maziar A; Barazesh, Hamid; Iranikhah, Majid; Seyfarth, Andre
Section
Original Research ARTICLE
Publication year
2018
Publication date
Jul 11, 2018
Publisher
Frontiers Research Foundation
e-ISSN
16625218
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2294004180
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.