Abstract

An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton–Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton–Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy–momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.

Details

Title
Superluminality and the equivalence postulate of quantum mechanics
Author
Faraggi, Alon E 1 

 Department of Mathematical Sciences, University of Liverpool, Liverpool, UK 
Pages
1-5
Publication year
2012
Publication date
Mar 2012
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2294164134
Copyright
The European Physical Journal C is a copyright of Springer, (2012). All Rights Reserved., © 2012. This work is published under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.