It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The active spliced form of X-box-binding protein 1 (XBP1s) is a key modulator of ER stress, but the functional role of its post-translational modification remains unclear. Here, we demonstrate that XBP1s is a deacetylation target of Sirt6 and that its deacetylation protects against ER stress-induced hepatic steatosis. Specifically, the abundance of acetylated XBP1s and concordant hepatic steatosis were increased in hepatocyte-specific Sirt6 knockout and obese mice but were decreased by genetic overexpression and pharmacological activation of Sirt6. Mechanistically, we identified that Sirt6 deacetylated a transactivation domain of XBP1s at Lys257 and Lys297 and promoted XBP1s protein degradation through the ubiquitin-proteasome system. Overexpression of XBP1s, but not its deacetylation mutant 2KR (K257/297R), in mice increased lipid accumulation in the liver. Importantly, in liver tissues obtained from patients with nonalcoholic fatty liver disease (NAFLD), the extent of XBP1s acetylation correlated positively with the NAFLD activity score but negatively with the Sirt6 level. Collectively, we present direct evidence supporting the importance of XBP1 acetylation in ER stress-induced hepatic steatosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
2 College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
3 Department of Pathology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
4 Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
5 College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea





