Full text

Turn on search term navigation

Copyright © 2019 Li Wei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

This paper focuses on the on-line compensation of the disturbance rejection rate (DRR) for a platform seeker. The mathematical model of the typical platform seeker based on the inertial space is established, and the line-of-sight (LOS) rate from different signal extraction points is strictly derived. Considering the spring torque disturbance and damping torque disturbance caused by the missile attitude motion, the seeker DRR transfer functions are deduced and the amplitude and phase characteristics at different frequencies are also analyzed. In order to close the engineering practice, the DRR parasitic loop (DRRPL) model of the seeker is rationally simplified and the stable region of the parasitic loop from different extraction points is also obtained. However, to increase the stability and guidance accuracy of the missile terminal flight, the compensation scheme based on the high-gain extended state observer (ESO) is used to estimate the disturbance torques and eliminate the seeker DRR effect. Numerical simulations are conducted to verify the effectiveness of the proposed scheme. The simulation results show that the seeker DRR effect mainly exists in the middle and low frequencies and the stable region of the parasitic loop at different signal extraction points is different. The proposed compensation scheme can effectively eliminate the parasitic loop effect of the seeker and increase the flight stability of the missile. It can reduce the terminal miss distance of the missile and improve the strike accuracy.

Details

Title
On-Line Compensation for the Disturbance Rejection Rate of a Platform Seeker Based on a High-Gain Extended State Observer
Author
Li, Wei  VIAFID ORCID Logo  ; Liu, Shixiang  VIAFID ORCID Logo  ; Zhang, Wenjie; Xia Qunli  VIAFID ORCID Logo 
Editor
Paolo Castaldi
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16875966
e-ISSN
16875974
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2295342166
Copyright
Copyright © 2019 Li Wei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/