Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A Speaker Identification system for a personalized wearable device to combat gender-based violence is presented in this paper. Speaker recognition systems exhibit a decrease in performance when the user is under emotional or stress conditions, thus the objective of this paper is to measure the effects of stress in speech to ultimately try to mitigate their consequences on a speaker identification task, by using data augmentation techniques specifically tailored for this purpose given the lack of data resources for this condition. An extensive experimentation has been carried out for assessing the effectiveness of the proposed techniques. First, we conclude that the best performance is always obtained when naturally stressed samples are included in the training set, and second, when these are not available, their substitution and augmentation with synthetically generated stress-like samples improves the performance of the system.

Details

Title
Data Augmentation for Speaker Identification under Stress Conditions to Combat Gender-Based Violence
Author
Rituerto-González, Esther; Mínguez-Sánchez, Alba; Gallardo-Antolín, Ascensión; Peláez-Moreno, Carmen
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2296749434
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.