Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The objective of this study was to develop a heating, ventilation, and air conditioning (HVAC) system optimization control strategy involving fan coil unit (FCU) temperature control for energy conservation in chilled water systems to enhance the operating efficiency of HVAC systems. The proposed control strategy involves three techniques, which are described as follows. The first technique is an algorithm for dynamic FCU temperature setting, which enables the FCU temperature to be set in accordance with changes in the outdoor temperature to satisfy the indoor thermal comfort for occupants. The second technique is an approach for determining the indoor cold air demand, which collects the set FCU temperature and converts it to the refrigeration ton required for the chilled water system; this serves as the control target for ensuring optimal HVAC operation. The third technique is a genetic algorithm for calculating the minimum energy consumption for an HVAC system. The genetic algorithm determines the pump operating frequency associated with minimum energy consumption per refrigeration ton to control energy conservation. To demonstrate the effectiveness of the proposed HVAC system optimization control strategy combining FCU temperature control, this study conducted a field experiment. The results revealed that the proposed strategy enabled an HVAC system to achieve 39.71% energy conservation compared with an HVAC system operating at full load.

Details

Title
Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control
Author
Chang-Ming, Lin; Hsin-Yu, Liu; Ko-Ying Tseng; Lin, Sheng-Fuu
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2296749497
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.