Full Text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the last decades, the selective liquid phase oxidation of alcohols to the corresponding carbonyl compounds has been a subject of growing interest. Research has focused on green methods that use “clean” oxidants such as O2 in combination with supported metal nanoparticles as the catalyst. Among the alcohols, benzyl alcohol is one of the most studied substrates. Indeed, benzyl alcohol can be converted to benzaldehyde, largely for use in the pharmaceutical and agricultural industries. This conversion serves as model reaction in testing new potential catalysts, that can then be applied to other systems. Pd based catalysts have been extensively studied as active catalytic metals for alcohol oxidation for their high activity and selectivity to the corresponding aldehyde. Several catalytic materials obtained by careful control of the morphology of Pd nanoparticles, (including bimetallic systems) and by tuning the support properties have been developed. Moreover, reaction conditions, including solvent, temperature, pressure and alcohol concentration have been investigated to tune the selectivity to the desired products. Different reaction mechanisms and microkinetic models have been proposed. The aim of this review is to provide a critical description of the recent advances on Pd catalyzed benzyl alcohol oxidation.

Details

Title
Selective Benzyl Alcohol Oxidation over Pd Catalysts
Author
Chan-Thaw, Carine Edith; Savara, Aditya; Villa, Alberto
Publication year
2018
Publication date
Oct 2018
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2296833696
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.