Full text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rod-shaped Cu1Fe9Ox precursor was successfully prepared through an aqueous precipitation method. The shape and phase composition were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that Cu1Fe9Ox is composed of CuFe2O4 and Fe2O3. The reduction performance of Cu1Fe9Ox was studied by in situ XRD and H2 temperature-programmed reduction (H2-TPR). Cu/Fe3O4 nanorod catalyst is obtained through the controllable reduction of Cu1Fe9Ox nanorod, and the formed Cu/Fe3O4 nanorod catalyst does not have low-temperature water gas shift (WGS) activity, but exhibits high-temperature WGS reaction activity. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) studies showed that the main species of copper is Cu+ during the WGS reaction. The interaction between Cu and Fe3O4 rod and phase evolution of Cu species are quite different from Cu/Fe3O4 nanoparticles.

Details

Title
Evolution of Copper Supported on Fe3O4 Nanorods for WGS Reaction
Author
Ma, Lingjuan; Ma, Hongbin; Han, Dawei; Qiu, Mingyue; Guan, Yafei; Hu, Yanlei
Publication year
2018
Publication date
Oct 2018
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2296833698
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.