Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unmanned Surface Vehicles (USVs) are commonly equipped with multi-modality sensors. Fully utilized sensors could improve object detection of USVs. This could further contribute to better autonomous navigation. The purpose of this paper is to solve the problems of 3D object detection of USVs in complicated marine environment. We propose a 3D object detection Depth Neural Network based on multi-modality data of USVs. This model includes a modified Proposal Generation Network and Deep Fusion Detection Network. The Proposal Generation Network improves feature extraction. Meanwhile, the Deep Fusion Detection Network enhances the fusion performance and can achieve more accurate results of object detection. The model was tested on both the KITTI 3D object detection dataset (A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago) and a self-collected offshore dataset. The model shows excellent performance in a small memory condition. The results further prove that the method based on deep learning can give good accuracy in conditions of complicated surface in marine environment.

Details

Title
A 3D Object Detection Based on Multi-Modality Sensors of USV
Author
Wu, Yingying; Qin, Huacheng; Liu, Tao; Liu, Hao; Wei, Zhiqiang
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2297044946
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.