It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Stimulus-Response conflict is generated by an overlap between stimulus and response dimensions, but the intrinsic nature of this interaction is not yet deeply clarified. In this study, using a modified Eriksen flanker task, we have investigated how flankers have to be incongruent to target in order to produce an interference and whether and how this interference interacts with the one produced by Stimulus features overlap. To these aims, an Eriksen-like task employing oriented hands\arrows has been designed to distinguish between two types of Stimulus-Response (S-R) interferences: one derived by a short-term association and one based on automatic processes. Stimulus-Stimulus (S-S) conflict has been also included in the same factorial design. Behavioral, Event Related Potential (ERP) and oscillatory activity data have been measured. Results revealed distinct S-S and automatic S-R effects on behavioral performance. ERP and Theta band power modulation results suggested an early frontal S-S conflict processing followed by a posterior simultaneous S-S and automatic S-R conflict processing. These findings provide evidence that, in presence of different conflicts, the sequence of stimulus identification and response selection could not move forward in a linear serial direction, but it may involve further effort, mirrored in posterior late components and response time prolongation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Neuroscience, Imaging and Clinical Sciences, University “G d’Annunzio”, Chieti, Italy; Institute for Advanced Biomedical Technologies, Chieti, Italy
2 Department of Neuroscience, Imaging and Clinical Sciences, University “G d’Annunzio”, Chieti, Italy