Full Text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Black carbon (BC) and dust impart significant effects on the South Asian monsoon (SAM), which is responsible for 80 % of the region's annual precipitation. This study implements a variable-resolution (VR) version of the Community Earth System Model (CESM) to quantify two radiative effects of absorbing BC and dust on the SAM. Specifically, this study focuses on the snow darkening effect (SDE), as well as how these aerosols interact with incoming and outgoing radiation to facilitate an atmospheric response (i.e., aerosol–radiation interactions, ARIs). By running sensitivity experiments, the individual effects of SDE and ARI are quantified, and a theoretical framework is applied to assess these aerosols' impacts on the SAM. It is found that ARIs of absorbing aerosols warm the atmospheric column in a belt coincident with the May–June averaged location of the subtropical jet, bringing forth anomalous upper-tropospheric (lower-tropospheric) anticyclogenesis (cyclogenesis) and divergence (convergence). This anomalous arrangement in the mass fields brings forth enhanced rising vertical motion across South Asia and a stronger westerly low-level jet, the latter of which furnishes the Indian subcontinent with enhanced Arabian Gulf moisture. Precipitation increases of 2 mm d-1 or more (a 60 % increase in June) result across much of northern India from May through August, with larger anomalies (+5 to +10 mm d-1) in the western Indian mountains and southern Tibetan Plateau (TP) mountain ranges due to orographic and anabatic enhancement. Across the Tibetan Plateau foothills, SDE by BC aerosols drives large precipitation anomalies of > 6 mm d-1 (a 21 %–26 % increase in May and June), comparable to ARI of absorbing aerosols from April through August. Runoff changes accompany BC SDE-induced snow changes across Tibet, while runoff changes across India result predominantly from dust ARI. Finally, there are large differences in the simulated SDE between the VR and traditional 1 simulations, the latter of which simulates a much stronger SDE and more effectively modifies the regional circulation.

Details

Title
Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: experiments using variable-resolution CESM
Author
Rahimi, Stefan 1 ; Liu, Xiaohong 1 ; Wu, Chenglai 2   VIAFID ORCID Logo  ; Lau, William K 3 ; Brown, Hunter 1 ; Wu, Mingxuan 1   VIAFID ORCID Logo  ; Qian, Yun 4 

 Department of Atmospheric Science, University of Wyoming, 1000 E. University, 1000 E. University Ave. Laramie, WY 82071, USA 
 Department of Atmospheric Science, University of Wyoming, 1000 E. University, 1000 E. University Ave. Laramie, WY 82071, USA; International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China 
 Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA 
 Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA 
Pages
12025-12049
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2297119631
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.