Full Text

Turn on search term navigation

© 2019 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

NODDI is widely used in parameterizing microstructural brain properties. The model includes three signal compartments: intracellular, extracellular, and free water. The neurite compartment intrinsic parallel diffusivity (d∥) is set to 1.7 μm2⋅ms−1, though the effects of this assumption have not been extensively explored. This work investigates the optimality of d∥ = 1.7 μm2⋅ms−1 under varying imaging protocol, age groups, sex, and tissue type in comparison to other biologically plausible values of d∥.

Methods

Model residuals were used as the optimality criterion. The model residuals were evaluated in function of d∥ over the range from 0.5 to 3.0 μm2⋅ms−1. This was done with respect to tissue type (i.e., white matter versus gray matter), sex, age (infancy to late adulthood), and diffusion-weighting protocol (maximum b-value). Variation in the estimated parameters with respect to d∥ was also explored.

Results

Results show d∥ = 1.7 μm2⋅ms−1 is appropriate for adult brain white matter but it is suboptimal for gray matter with optimal values being significantly lower. d∥ = 1.7 μm2⋅ms−1 was also suboptimal in the infant brain for both white and gray matter with optimal values being significantly lower. Minor optimum d∥ differences were observed versus diffusion protocol. No significant sex effects were observed. Additionally, changes in d∥ resulted in significant changes to the estimated NODDI parameters.

Conclusion

The default (d∥) of 1.7 μm2⋅ms−1 is suboptimal in gray matter and infant brains.

Details

Title
Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation
Author
Guerrero, Jose M; Adluru, Nagesh; Bendlin, Barbara B; H Hill Goldsmith; Schaefer, Stacey M; Davidson, Richard J; Kecskemeti, Steven R; Zhang, Hui; Alexander, Andrew L
First page
e0217118
Section
Research Article
Publication year
2019
Publication date
Sep 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2297123193
Copyright
© 2019 Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.