It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resource is crucial. At the same time, the CMS collaboration is committed to minimizing time to insight for every scientist, by pushing for fewer possible access restrictions to the full data sample and supports the free choice of applications to run on the computing resources. Supporting such variety of workflows while preserving efficient resource usage poses special challenges. In this paper we report on three complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis jobs: automatic job splitting, automated run time estimates and automated site selection for jobs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer