It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Scalable quantum technologies such as quantum computers will require very large numbers of quantum devices to be characterised and tuned. As the number of devices on chip increases, this task becomes ever more time-consuming, and will be intractable on a large scale without efficient automation. We present measurements on a quantum dot device performed by a machine learning algorithm in real time. The algorithm selects the most informative measurements to perform next by combining information theory with a probabilistic deep-generative model that can generate full-resolution reconstructions from scattered partial measurements. We demonstrate, for two different current map configurations that the algorithm outperforms standard grid scan techniques, reducing the number of measurements required by up to 4 times and the measurement time by 3.7 times. Our contribution goes beyond the use of machine learning for data search and analysis, and instead demonstrates the use of algorithms to automate measurements. This works lays the foundation for learning-based automated measurement of quantum devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Department of Materials, University of Oxford, Oxford, UK
2 Department of Physics, University of Basel, Basel, Switzerland
3 Department of Engineering, University of Oxford, Oxford, UK
4 Department of Physics, Lancaster University, Lancaster, UK