It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding urothelial stem cell biology and differentiation has been limited by the lack of methods for their unlimited propagation. Here, we establish mouse urothelial organoids that can be maintained uninterruptedly for >1 year. Organoid growth is dependent on EGF and Wnt activators. High CD49f/ITGA6 expression features a subpopulation of organoid-forming cells expressing basal markers. Upon differentiation, multilayered organoids undergo reduced proliferation, decreased cell layer number, urothelial program activation, and acquisition of barrier function. Pharmacological modulation of PPARγ and EGFR promotes differentiation. RNA sequencing highlighted genesets enriched in proliferative organoids (i.e. ribosome) and transcriptional networks involved in differentiation, including expression of Wnt ligands and Notch components. Single-cell RNA sequencing (scRNA-Seq) analysis of the organoids revealed five clusters with distinct gene expression profiles. Together with the use of γ-secretase inhibitors, scRNA-Seq confirms that Notch signaling is required for differentiation. Urothelial organoids provide a powerful tool to study cell regeneration and differentiation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
2 Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain
3 CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, Madrid, Spain
4 Genomics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
5 Weil Cornell Medicine, New York, NY, USA
6 Confocal Microscopy Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
7 Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain; CIBERONC, Madrid, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain