Abstract

Histone deacetylases (HDACs) are a diverse family of essential transcriptional regulatory enzymes, that function through the spatial and temporal recruitment of protein complexes. As the composition and regulation of HDAC complexes are only partially characterized, we built the first global protein interaction network for all 11 human HDACs in T cells. Integrating fluorescence microscopy, immunoaffinity purifications, quantitative mass spectrometry, and bioinformatics, we identified over 200 unreported interactions for both well-characterized and lesser-studied HDACs, a subset of which were validated by orthogonal approaches. We establish HDAC11 as a member of the survival of motor neuron complex and pinpoint a functional role in mRNA splicing. We designed a complementary label-free and metabolic-labeling mass spectrometry-based proteomics strategy for profiling interaction stability among different HDAC classes, revealing that HDAC1 interactions within chromatin-remodeling complexes are largely stable, while transcription factors preferentially exist in rapid equilibrium. Overall, this study represents a valuable resource for investigating HDAC functions in health and disease, encompassing emerging themes of HDAC regulation in cell cycle and RNA processing and a deeper functional understanding of HDAC complex stability.

Details

Title
The functional interactome landscape of the human histone deacetylase family
Author
Joshi, Preeti 1 ; Greco, Todd M 1 ; Guise, Amanda J 1 ; Luo, Yang 1 ; Yu, Fang 1 ; Nesvizhskii, Alexey I 2 ; Cristea, Ileana M 1 

 Department of Molecular Biology, Princeton University, Princeton, NJ, USA 
 Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA 
Section
Article
Publication year
2013
Publication date
2013
Publisher
EMBO Press
e-ISSN
17444292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2299139037
Copyright
© 2013. This work is published under http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.