It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Growth is a fundamental process of life. Growth requirements are well-characterized experimentally for many microbes; however, we lack a unified model for cellular growth. Such a model must be predictive of events at the molecular scale and capable of explaining the high-level behavior of the cell as a whole. Here, we construct an ME-Model for Escherichia coli—a genome-scale model that seamlessly integrates metabolic and gene product expression pathways. The model computes ∼80% of the functional proteome (by mass), which is used by the cell to support growth under a given condition. Metabolism and gene expression are interdependent processes that affect and constrain each other. We formalize these constraints and apply the principle of growth optimization to enable the accurate prediction of multi-scale phenotypes, ranging from coarse-grained (growth rate, nutrient uptake, by-product secretion) to fine-grained (metabolic fluxes, gene expression levels). Our results unify many existing principles developed to describe bacterial growth.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA