You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2014. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
The composition of wheat straw leaf and stem fractions were characterized using traditional strong acid hydrolysis, and monoclonal antibodies using comprehensive microarray polymer profiling (CoMPP). These results are then related to high throughput lignocellulose pretreatment and saccharification screening data. Pure leaf fraction of wheat straw was the least recalcitrant compared to pure stem and easily digested by commercial cellulases after moderate hydrothermal pretreatment; 63% and 31% (w/w) of glucan, 88% and 61% of xylan were released from the leaf and stem fractions, respectively. By preparing samples of various leaf-to-stem (L/S) ratios, we found shifting conversion behavior as processing parameters were modified. Increasing the enzyme dosage, pretreatment temperature and pretreatment time all significantly improved conversion rates in samples with more than 50% leaf content, whereas less impact was observed on samples with less than 50% leaf content. Enzyme affinity, desorption and readsorption with leaf and stem fractions may affect the sugar yield in wheat straw saccharification. The data suggest that the L/S ratio is an important parameter when adjusting or optimizing conversion processes and additionally in feedstock breeding. Furthermore, this highlights the need for rapid techniques for determining L/S ratio in wheat straw harvests. The CoMPP data on specific carbohydrates and leaf pectin highlight carbohydrate epitopes that may be useful as markers in the development of novel screening techniques; especially pectin or arabinogalactan proteins related epitopes are promising.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Forest and Landscape, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark
2 Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg C, Denmark