It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Integration of genetic and metabolic profiling holds promise for providing insight into human disease. Coronary artery disease (CAD) is strongly heritable, but the heritability of metabolomic profiles has not been evaluated in humans. We performed quantitative mass spectrometry-based metabolic profiling in 117 individuals within eight multiplex families from the GENECARD study of premature CAD. Heritabilities were calculated using variance components. We found high heritabilities for amino acids (arginine, ornithine, alanine, proline, leucine/isoleucine, valine, glutamate/glutamine, phenylalanine and glycine; h2=0.33–0.80, P=0.005–1.9 × 10−16), free fatty acids (arachidonic, palmitic, linoleic; h2=0.48–0.59, P=0.002–0.00005) and acylcarnitines (h2=0.23–0.79, P=0.05–0.0000002). Principal components analysis was used to identify metabolite clusters. Reflecting individual metabolites, several components were heritable, including components comprised of ketones, β-hydroxybutyrate and C2-acylcarnitine (h2=0.61); short- and medium-chain acylcarnitines (h2=0.39); amino acids (h2=0.44); long-chain acylcarnitines (h2=0.39) and branched-chain amino acids (h2=0.27). We report a novel finding of high heritabilities of metabolites in premature CAD, establishing a possible genetic basis for these profiles. These results have implications for understanding CAD pathophysiology and genetics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Medicine, Duke University Medical Center, Durham, NC, USA; Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
2 Sarah W Stedman Nutrition and Metabolism Center, Duke University, Durham, NC, USA
3 Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
4 Department of Medicine, Duke University Medical Center, Durham, NC, USA
5 Department of Medicine, Duke University Medical Center, Durham, NC, USA; Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, NC, USA
6 Department of Medicine, Duke University Medical Center, Durham, NC, USA; Sarah W Stedman Nutrition and Metabolism Center, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA