You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2013. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
We define the f-plane, y-independent, potential vorticity (PV) invertibility principle as a coupled pair of first-order partial differential equations relating the balanced wind and mass fields to the known PV. Analytical solutions of this invertibility principle are derived for cases in which an isolated PV anomaly is confined within a region of the vertical plane. The solutions aid in understanding the dynamics of low-latitude PV intrusions whose associated cloud patterns are often referred to as cloud surges, or moisture bursts, and whose flow patterns are often referred to as tropical upper tropospheric troughs. The existence of such tongues of high PV air intruding into the upper troposphere is documented using reanalysis data from the “Year” of Tropical Convection data set. The solutions illustrate the phenomenon of isentropic upglide below an upper tropospheric positive anomaly in PV. They also quantify how the partitioning of PV between absolute vorticity and static stability depends on the shape and strength of the PV anomaly. With slight modifications, the solutions apply to the problem of determining the balanced flow induced by a surface temperature anomaly, which is equivalent to a very thin layer of infinite PV at the surface. Through numerical solutions of the fully nonlinear invertibility principle we provide justification for the anelastic-type approximation used in the analytical theory.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA