It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using the sol-gel method we synthesized hematite (α − Fe2O3) nanoparticles in a silica matrix with 60 wt % of hematite. X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the sample demonstrate the formation of the α − Fe2O3 phase and amorphous silica. A transmission electron microscopy (TEM) measurements show that the sample consists of two particle size distributions of the hematite nanoparticles with average sizes around 10 nm and 20 nm, respectively. Magnetic properties of hematite nanoparticles were measured using a superconducting quantum interference device (SQUID). Investigation of the magnetic properties of hematite nanoparticles showed a divergence between field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves and two maxima. The ZFC magnetization curves displayed a maximum at around TB = 50 K (blocking temperature) and at TM = 83 K (the Morin transition). The hysteresis loop measured at 5 K was symmetric around the origin, with the values of coercivity, remanent and mass saturation magnetization HC10K ≈ 646 A/cm, (810 Oe), Mr10K = 1.34 emu/g and MS10K = 6.1 emu/g respectively. The absence of both coercivity (HC300K = 0) and remanent magnetization (Mr300K = 0) in M(H) curve at 300 K reveals super-paramagnetic behavior, which is desirable for application in biomedicine. The bimodal particle size distributions were used to describe observed magnetic properties of hematite nanoparticles. The size distribution directly influences the magnetic properties of the sample.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer