It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Peripheral blood mononuclear cells (PBMCs) have been shown to produce and release a plethora of pro-angiogenetic factors in response to γ-irradiation, partially accounting for their tissue-regenerative capacity. Here, we investigated whether a certain cell subtype of PBMCs is responsible for this effect, and whether the type of cell death affects the pro-angiogenic potential of bioactive molecules released by γ-irradiated PBMCs. PBMCs and PBMC subpopulations, including CD4+ and CD8+ T cells, B cells, monocytes, and natural killer cells, were isolated and subjected to high-dose γ-irradiation. Transcriptome analysis revealed subpopulation-specific responses to γ-irradiation with distinct activation of pro-angiogenic pathways, cytokine production, and death receptor signalling. Analysis of the proteins released showed that interactions of the subsets are important for the generation of a pro-angiogenic secretome. This result was confirmed at the functional level by the finding that the secretome of γ-irradiated PBMCs displayed higher pro-angiogenic activity in an aortic ring assay. Scanning electron microscopy and image stream analysis of γ-irradiated PBMCs revealed distinct morphological changes, indicative for apoptotic and necroptotic cell death. While inhibition of apoptosis had no effect on the pro-angiogenic activity of the secretome, inhibiting necroptosis in stressed PBMCs abolished blood vessel sprouting. Mechanistically, we identified tumor necrosis factor (TNF) receptor superfamily member 1B as the main driver of necroptosis in response to γ-irradiation in PBMCs, which was most likely mediated via membrane-bound TNF-α. In conclusion, our study demonstrates that the pro-angiogenic activity of the secretome of γ-irradiated PBMCs requires interplay of different PBMC subpopulations. Furthermore, we show that TNF-dependent necroptosis is an indispensable molecular process for conferring tissue-regenerative activity and for the pro-angiogenic potential of the PBMC secretome. These findings contribute to a better understanding of secretome-based therapies in regenerative medicine.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; FFG Project 852748 “APOSEC“, Medical University of Vienna, Vienna, Austria
2 Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, UK
3 Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; FFG Project 852748 “APOSEC“, Medical University of Vienna, Vienna, Austria; Vienna Business Agency Project 2343727 “APOSEC to clinic”, Medical University Vienna, Vienna, Austria
4 Synlab Analytics and Services Switzerland AG, Birsfelden, Switzerland
5 Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
6 Division of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna, Austria
7 Research Laboratories, Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria