It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Although numerous attempts have been made to alter the sex ratio of the progeny of mammals, the limitations of current technologies have prevented their widespread use in farm animals. The presence or absence of a Y chromosome determines whether a mammalian embryo develops as a male or female, and non-invasive genetic reporters such as fluorescence protein markers have been intensively applied in a variety of fields of research. To develop a non-invasive and instantaneous method for advance determination of the sex of embryos, we developed a Y chromosome-linked eGFP mouse line that stably expresses green fluorescent protein under the control of the CAG promoter. The development of the CRISPR/Cas9 system has made it easy to deliver an exogenous gene to a specific locus of a genome, and linking a tracer to the Y chromosome has simplified the process of predicting the sex of embryos collected by mating a Y-Chr-eGFP transgenic male with a wild-type female. XY embryos appeared green, under a fluorescence microscope, and XX embryos did not. Y chromosome-linked genes were amplified by nested PCR to further confirm the accuracy of this method, and the simultaneous transplantation of green and non-green embryos into foster mothers indicated that 100% accuracy was achieved by this method. Thus, the Y-Chr-eGFP mouse line provides an expeditious and accurate approach for sexing pre-implantation embryos and can be efficiently used for the pre-selection of sex.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, P.R. China
2 Shenzhen Hengsheng Hospital, Shenzhen, P.R. China
3 Center for Research in Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P.R. China