Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The problem of attitude estimation is broadly addressed using the Kalman filter formalism and unit quaternions to represent attitudes. This paper is also included in this framework, but introduces a new viewpoint from which the notions of “multiplicative update” and “covariance correction step” are conceived in a natural way. Concepts from manifold theory are used to define the moments of a distribution in a manifold. In particular, the mean and the covariance matrix of a distribution of unit quaternions are defined. Non-linear versions of the Kalman filter are developed applying these definitions. A simulation is designed to test the accuracy of the developed algorithms. The results of the simulation are analyzed and the best attitude estimator is selected according to the adopted performance metric.

Details

Title
Kalman Filtering for Attitude Estimation with Quaternions and Concepts from Manifold Theory
Author
Bernal-Polo, Pablo; Martínez-Barberá, Humberto
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2301576261
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.