Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There exists a technological momentum towards the development of unobtrusive, simple, and reliable systems for long-term sleep monitoring. An off-the-shelf commercial pressure sensor meeting these requirements is the Emfit QS. First, the potential for sleep apnea screening was investigated by revealing clusters of contaminated and clean segments. A relationship between the irregularity of the data and the sleep apnea severity class was observed, which was valuable for screening (sensitivity 0.72, specificity 0.70), although the linear relation was limited (R2of 0.16). Secondly, the study explored the suitability of this commercial sensor to be merged with gold standard polysomnography data for future sleep monitoring. As polysomnography (PSG) and Emfit signals originate from different types of sensor modalities, they cannot be regarded as strictly coupled. Therefore, an automated synchronization procedure based on artefact patterns was developed. Additionally, the optimal position of the Emfit for capturing respiratory and cardiac information similar to the PSG was identified, resulting in a position as close as possible to the thorax. The proposed approach demonstrated the potential for unobtrusive screening of sleep apnea patients at home. Furthermore, the synchronization framework enabled supervised analysis of the commercial Emfit sensor for future sleep monitoring, which can be extended to other multi-modal systems that record movements during sleep.

Details

Title
Evaluation of a Commercial Ballistocardiography Sensor for Sleep Apnea Screening and Sleep Monitoring
Author
Huysmans, Dorien; Borzée, Pascal; Testelmans, Dries; Buyse, Bertien; Willemen, Tim; Sabine Van Huffel; Varon, Carolina
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2301613812
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.