It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We coupled a cardiovascular model with a thermoregulation model to predict human blood pressure in unsteady environmental conditions. Our cardiovascular model is a lumped parameter model and consists of 42 segments, which include the entire artery and vein system, divided into 18 segments; the heart, divided into 4 segments; and the pulmonary artery and vein. The vessel parameters were adjusted on the basis of local body blood volume and flow of the thermoregulation model in a thermoneutral environment. Blood pressure under unsteady environmental conditions is predicted by changing the heart rate and vessel resistance of the cardiovascular model which is controlled by blood flow that the thermoregulation model predicts. It is possible to predict the increase in blood pressure under cold environmental conditions and the increase in cardiac output under hot environmental conditions and when bathing. The model was validated by simulating bathing experiments. As the result, the model predicted the peak blood pressure later than the experimental data in a cold environment. To improve the accuracy of the model, it is necessary to consider a method for controlling the heart rate, vessel resistance, and gravity effects after a change in posture.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer