It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents experimental triaxial tests conducted on two lightly cemented sand samples on the set-up conditions of a Hollow Cylinder Torsional Apparatus (HCTA). The laboratory study has been carried out on an angular to sub-angular silica sand reinforced with Portland cement of high early strength. The samples have identical porosity/volumetric cement content ratio, η/Civ, values. The Young's modulus and shear modulus were measured by the application of a series of small unload-reload cycles at different investigation points along the triaxial stress path up to about 50% of the maximum deviatoric stress. At these investigation points, additional series of unload-reload cycles of higher amplitudes were also applied and the stiffness moduli assessed using local instrumentation. While the peak strength seems to be controlled by the density of the sand matrix, as extensive bond cementation damages occur at peak and pre-peak stages, the Young's modulus and shear modulus normalised by the void ratio function show the effect of the cementation ratio with higher values for the sample with higher cementation ratio.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer