It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The behaviour of gap graded soils comprising non-plastic fines (sand or silt) mixed with a coarser sand or gravel fraction has received attention from researchers interested in internal instability under seepage loading (a form of internal erosion) as well as researchers interested in load:deformation responses. Skempton and Brogan [1] postulated that resistance to seepage induced instability depends upon the proportion of the overall applied stress that is transmitted by the finer fraction. Shire et al. [2] explored Skempton and Brogan’s hypothesis using DEM simulations to look at the proportion of the applied stress transmitted by the finer fractions (α) in ideal isotropic samples. They showed that at low fines contents (FC< FC*) the average stress transmitted by the finer grains is less than the applied stress (α<1), while for FC>FC+ the fines play a key role in stress transmission (α>1); for FC*<FC< FC+, α depends on the sample density. The current contribution describes a series of constant p’ DEM triaxial test simulations carried out to assess the evolution of stress heterogeneity with shearing. The simulation data generated indicate that a sample can transition from being fines dominated (with the fines transmitting a significant proportion of the applied stress and α ≥1) to coarse or sand- dominated (with α <1) as the material dilates during shear deformation. While α reduces as the samples dilate, the relationship between the α and the sample void ratio is non-trivial. The anisotropy of the coarse-coarse contact network exceeds the overall contact force anisotropy; this indicates that the deviator stress is transmitted through a strong force network passing through the coarse-coarse contacts supported by the fine-coarse contacts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer